MeiliSearch is an open-source search engine written in Rust that provides a fast and relevant search experience to your users: it can be considered an alternative to Algolia, Elasticsearch, or Solr.
In this tutorial, we will build a search engine for our blog posts using MeiliSearch and React: I will show you how I added Meilisearch to this blog to search through my blog posts.
NB: We assume you already have a working React application and MDX files for your blog posts.
The final result (which you can test live) is the following:
Loading video...
Installing and running Meilisearch using Docker
To install MeiliSearch, you can use Docker or others. I will use Docker in this tutorial.
First, we want to add the Docker configuration to our project. To do so,
let's add the file docker-compose.yml
at the root of our project:
version: "3.9"
services:
meilisearch:
image: "getmeili/meilisearch:latest"
restart: unless-stopped
ports:
- "127.0.0.1:7700:7700"
volumes:
- /var/local/meilisearch:/data.ms
The, run the command docker-compose up
to start MeiliSearch.
Creating a MeiliSearch client
Now that MeiliSearch is running, we want to create a client to interact with it.
Setting the MeiliSearch URL and API key
To create a client, we need to set the URL and the API key of our MeiliSearch instance. To do so, we can use environment variables.
In Next.js,
it is as simple as creating a .env.local
file at the root of our project
and setting the following values:
MEILISEARCH_HOST=http://localhost:7700
MEILISEARCH_API_KEY=
When you need to run your application in production, you can set the correct values for these variables using your CI or service provider (such as Vercel).
Installing the MeiliSearch client for JavaScript
To install the MeiliSearch client for JavaScript, run the following command:
npm i meilisearch
Creating the client
Now that we have installed the MeiliSearch client, we can create a function to create a client to interact with our MeiliSearch instance.
import { MeiliSearch } from 'meilisearch';
function getMeiliSearchClient() {
const host = process.env.MEILISEARCH_HOST;
const apiKey = process.env.MEILISEARCH_API_KEY;
if (!host) {
throw new Error('MEILISEARCH_HOST is not defined');
}
return new MeiliSearch({ host, apiKey });
}
export default getMeiliSearchClient;
Et voilร ! When you need to use the MeiliSearch client, you can import the
getMeiliSearchClient
function and call it to get a client.
const client = getMeiliSearchClient();
Indexing our blog posts
Now that we have a client, we want to index our blog posts in MeiliSearch.
In this guide, we will use a very simple way to index our blog posts: we check if the files are diffed and only index the diffed files.
The first time you run the indexing, you will need to index all your blog posts.
Creating a shared interface for the indexed documents
We want to create a shared interface for your indexed documents, so we can use it across our application. This interface will be used to type the documents we index in MeiliSearch.
interface IndexedDocument {
id: string;
fullPath: string;
content: string;
title: string;
path: string;
collection: string;
tags: string[];
description: string;
link: string;
image?: string;
}
export default IndexedDocument;
Iterating over the blog posts to index them
To index our blog posts, we need to iterate over them. To do so, we will use
a simple function that, given a directory, will recursively iterate over all
the directories and find all the files with the extension .mdx
.
import { loadEnvConfig } from '@next/env';
import { lstat, readdir } from 'fs/promises';
import { join } from 'path';
// load environment variables using Next.js
loadEnvConfig('.', process.env.NODE_ENV !== 'production');
async function getDocumentsFromDirectory(
directory: string,
tags: string[],
documents: IndexedDocument[],
mapper = (doc: IndexedDocument) => doc
) {
// read the directory
const files = await readdir(directory);
// iterate over the files in the directory
for (const file of files) {
// get the path of the file
const fullPath = join(directory, file);
const stats = await lstat(fullPath);
// if the file is a directory, we want to recursively iterate over it
if (stats.isDirectory()) {
await getDocumentsFromDirectory(fullPath, tags, documents, mapper);
} else {
// if the file is an MDX file, we want to extract the metadata
if (stats.isFile() && file.endsWith(MDX_EXTENSION)) {
// extract the metadata from the MDX file
const matter = readFrontMatter(fullPath);
// if something went wrong, we want to skip this file
if (!matter) {
continue;
}
// collect the metadata of the file and add it to the documents
const content = matter.content;
const data = matter.data;
const collection = data.collection?.split('.json')[0];
const path = file?.split('.mdx')[0];
// if you have an ID for your documents, use that one
// we don't, so we generate one from the full path
const id = Buffer.from(fullPath).toString('hex');
// add the document to the documents
// we use the mapper function to transform the document if needed
documents.push(
mapper({
id,
fullPath,
content,
title: data?.title,
description: data?.excerpt,
path,
image: data.coverImage,
collection,
tags,
link: '',
})
);
}
}
}
return documents;
}
Let's quickly take a look at the function readFrontMatter
, which allows us
to read the metadata of an MDX file.
We use the package gray-matter
to read the metadata of an MDX file:
import matter from 'gray-matter';
export function readFrontMatter(fullPath: string) {
try {
const fileContents = readFileSync(fullPath, 'utf8');
return matter(fileContents);
} catch {
return;
}
}
Indexing the blog posts
Now that we have a function to get all the documents from a directory, we can use it to index our blog posts:
const MDX_EXTENSION = `.mdx`;
const INDEX = 'content';
// index documents when the script is run directly
void indexAll();
// define the function to index the files
async function indexAll() {
const client = getMeiliSearchClient();
// we will collect all the documents in this array
const documents: IndexedDocument[] = [];
// get the documents from the blog posts directory
// in this case, the directory is _posts
await getDocumentsFromDirectory(
'_posts',
['blog', 'posts'],
documents,
(document) => {
// we want to add the link to the document
return {
...document,
link: `/blog/${document.collection}/${document.path}`,
};
}
);
const index = client.index(INDEX);
try {
console.log(`[Search Engine] Indexing ${documents.length} documents...`);
// index the documents or update them if they already exist
await index.updateDocuments(documents);
console.error(`[MeiliSearch] Tasks created successfully`);
} catch (error) {
console.error(`[MeiliSearch] Failed to index documents`);
console.error(error);
}
}
If you have other collections of documents in different directories (as it
is the case in this blog), you can simply add a call to
getDocumentsFromDirectory
for each directory.
The documents
array will get populated with all the documents from all the
directories.
Additionally, to make a property "filterable", you need to add it to the
filterableAttributes
:
client.index(INDEX).updateFilterableAttributes(['tags']);
๐ Congratulations! You have now indexed your blog posts in MeiliSearch!
Executing the script
Now that we have a script to index our blog posts, we want to execute it
when we build our application. To do so, let's add a script to npm
and use
tsx
to execute it:
{
"scripts": {
"index-docs": "npx tsx indexer.ts"
}
}
To run it, use the following command:
npm run index-docs
Indexing only the changed documents
If you have a lot of documents, you might not want to index all of them every time you build your application.
Therefore, after indexing your documents for the first time, we can use
a slightly smarter way to detect which documents have changed and only index
those. For example, we can use git
to retrieve the list of changed files,
and filter out all the files that have not changed.
Let's create a Javascript function to retrieve the list of files that have
been changed using a git
command:
function getChangedFiles() {
const diffOutput = execSync("git diff --name-only -- '***.mdx' ");
return diffOutput.toString().split('\n').filter(Boolean);
}
The above will check what .mdx
files have changed and will return a list
of file paths.
Now, we can use this function to only index the changed files, and we can
update our function above to check that the file changed before adding it to
the documents
array.
At the top of the file, we add the changed files to the changedFiles
constant:
const changedFiles = getChangedFiles();
Within the getDocumentsFromDirectory
function, we add a check to see if
the document is within the changedFiles
array:
// only index changed files
const fileDidChange = changedFiles.includes(fullPath);
if (!fileDidChange) {
continue;
}
Now, we only index the files that have changed! ๐
Adding a Search Bar to our blog
Now that we have indexed our blog posts, we want to add a search bar to our blog so that users can search for blog posts.
Creating an API handler to search for blog posts
Since we need to access Meilisearch from the frontend, we need to create an API handler that can securely connect with the search engine.
The API endpoint will be /api/search
:
- The request accepts two query parameters:
q
for the search query andtags
for the tags to filter on. - We use Zod to validate the query parameters
- We return an array as a list of blog posts that match the search query and the tags
import { NextApiRequest, NextApiResponse } from 'next';
import { z } from 'zod';
import getMeiliSearchClient from '~/core/meilisearch-client';
async function searchHandler(
req: NextApiRequest,
res: NextApiResponse
) {
// cache the response for 1 week
res.setHeader(
'Cache-Control',
'public, s-maxage=604800, stale-while-revalidate=59'
);
const client = getMeiliSearchClient();
// validate and extract the query from the request
const { q, tags } = getBodySchema().parse(req.query);
try {
// get tags from the query
const tagsFilter = (tags ?? '')
.split(',')
.filter(Boolean)
.map((tag) => {
return `tags = ${tag}`;
});
// search for the query in the index
const { hits } = await client.index('content').search(q, {
filter: [tagsFilter],
});
// return the results
return res.json(hits);
} catch (error) {
// if something went wrong, return an empty array
console.error(error);
res.json([]);
}
}
export default searchHandler;
function getBodySchema() {
return z.object({
q: z.string().min(1),
tags: z.string().optional(),
});
}
Creating a search bar component
Let's create the UI to search for blog posts. We will create a search bar in the header of the blog that allows users to search for the documents we indexed.
The component below uses APIs and components from the Makerkit UI kit: please treat these as implementation details and feel free to use your own components and APIs.
import React, {
FormEventHandler,
useCallback,
useEffect,
useMemo,
useState,
} from 'react';
import Link from 'next/link';
import Image from 'next/image';
import { Popover, Transition } from '@headlessui/react';
import { SpringSpinner } from 'react-epic-spinners';
import {
debounceTime,
Subject,
distinctUntilChanged,
switchMap,
tap,
} from 'rxjs';
import { useApiRequest } from '~/core/hooks/use-api';
import TextField from '~/core/ui/TextField';
import If from '~/core/ui/If';
function SearchBar({
tags,
}: React.PropsWithChildren<{
tags?: string[];
}>) {
const [results, setResults] = useState<Maybe<Array<IndexedDocument>>>();
const [searchRequest, { loading }] = useSearch();
const subject$ = useMemo(() => new Subject<string>(), []);
const [open, setOpen] = useState(false);
const onInput: FormEventHandler<HTMLInputElement> = useCallback(
(e) => {
subject$.next(e.currentTarget.value);
},
[subject$]
);
useEffect(() => {
const subscription = subject$
.pipe(
debounceTime(500),
distinctUntilChanged(),
switchMap((value) => {
if (!value) {
return Promise.resolve(undefined);
}
return searchRequest({
q: value,
tags: tags ?? [],
});
}),
tap((results) => {
setOpen(!!results);
})
)
.subscribe(setResults);
return () => subscription.unsubscribe();
}, [searchRequest, subject$, tags]);
return (
<div className={'w-full'}>
<TextField className={'flex justify-between'}>
<TextField.Input
className={
'rounded-full !border-transparent !bg-black-400' +
' text-base font-normal'
}
onInput={onInput}
onBlur={() => {
setTimeout(() => {
setOpen(false);
}, 150);
}}
onFocus={() => {
if (results?.length) {
setOpen(true);
}
}}
placeholder={'Search...'}
>
<If condition={loading}>
<div className={'absolute right-4 top-2 text-primary-500'}>
<SpringSpinner color={'currentColor'} size={24} />
</div>
</If>
</TextField.Input>
</TextField>
<If condition={open}>
<Popover className="relative top-1 z-10 rounded-sm">
<Transition
show={open}
appear={open}
enter="transition ease-out duration-200"
enterFrom="opacity-0 translate-y-1"
enterTo="opacity-100 translate-y-0"
leave="transition ease-in duration-150"
leaveFrom="opacity-100 translate-y-0"
leaveTo="opacity-0 translate-y-1"
>
<Popover.Panel
static
className="PopoverPanel max-h-[400px] overflow-y-auto bg-black-300"
>
<div className="overflow-hidden rounded-bl-md rounded-br-md">
<div className="relative flex flex-col space-y-1 bg-white p-2 dark:bg-black-300">
<If condition={results && !results.length}>
<p>
Sorry, we couldn't find any results for your search
</p>
</If>
{results?.map((result, index) => (
<Link
prefetch={false}
key={index}
href={result.link}
className={
'rounded-md bg-black-300 p-3 dark:hover:bg-black-200' +
' transition-all'
}
>
<div className={'flex items-center space-x-8'}>
<If condition={result.image}>
{(image) => (
<Image
src={image}
width={128}
height={128}
alt={`Image for ${result.title}`}
/>
)}
</If>
<div className={'flex flex-col space-y-1'}>
<p>
<span className={'font-semibold text-white'}>
{result.title}
</span>
</p>
<p className={'text-sm text-gray-400'}>
{result.description}
</p>
</div>
</div>
</Link>
))}
</div>
</div>
</Popover.Panel>
</Transition>
</Popover>
</If>
</div>
);
}
function useSearch() {
return useApiRequest<
IndexedDocument[],
{
q: string;
tags?: string[];
}
>('/api/search', 'GET');
}
export default SearchBar;
Okay, let's break down what's happening here.
The Search API Request Hook
Let's start with the useSearch
hook.
function useSearch() {
return useApiRequest<
IndexedDocument[],
{
q: string;
tags?: string[];
}
>('/api/search', 'GET');
}
Nothing special here. The hook useApiRequest
simply wraps a fetch call
around a hook with a reducer to handle the loading state.
In your
application, you're likely using SWR or React Query. Simply use their API to
execute a fetch call to the API handler /api/search
with a GET request.
Debouncing the Search Input Field with RxJS
One important thing to note is that we're debouncing the search input field using RxJs, which is a library for reactive programming that makes it a fairly trivial job.
Basically, we create a subject
that we can use to emit values when the
input changes. We then use the debounceTime
operator to only emit values
every 500 milliseconds, and switchMap
to cancel any previous requests that
are on-going when a new event is emitted.
Here we wrap a Subject
with a useMemo
hook to ensure that the subject is
the same between renders:
const subject$ = useMemo(() => new Subject<string>(), []);
Then, we subscribe to the subject and use the useEffect
hook to ensure
that it is only run the first time the component is rendered:
useEffect(() => {
const subscription = subject$
.pipe(
// debounce the request every 500ms
debounceTime(500),
distinctUntilChanged(),
switchMap((value) => {
if (!value) {
return Promise.resolve(undefined);
}
// execute call
return searchRequest({
q: value,
tags: tags ?? [],
});
}),
tap((results) => {
// only open the results list if there are results
setOpen(!!results);
})
)
.subscribe(
// set the results
setResults
);
return () => subscription.unsubscribe();
}, [searchRequest, subject$, tags]);
RxJS can be intimidating at first, but learning it is well worth it.
Emitting text field changes to the Subject
Now that we have the subject, we can emit values to it when the input field changes:
const onInput: FormEventHandler<HTMLInputElement> = useCallback(
(e) => {
subject$.next(e.currentTarget.value);
},
[subject$]
);
Then, you can add the onInput
handler to the input field:
<TextField.Input
className={
'rounded-full !border-transparent !bg-black-400' +
' text-base font-normal'
}
onInput={onInput}
onBlur={() => {
setTimeout(() => {
setOpen(false);
}, 150);
}}
onFocus={() => {
if (results?.length) {
setOpen(true);
}
}}
placeholder={'Search...'}
>
<If condition={loading}>
Loading...
</If>
</TextField.Input>
I also use the onBlur
and onFocus
handlers to open and close the results
panel. The rest of the UI really is just a matter of displaying the results
to the user and linking to the appropriate page.
Conclusion
In this tutorial, I've shown you how to index your blog posts in Meilisearch and how to create a React Search Bar component to query and display the results.
I hope you enjoyed this tutorial and that you'll be able to use Meilisearch successfully in your projects ๐
If you have any questions, feel free to reach out to me on Twitter or Discord.